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INTRODUCTION 

The flow and heat transfer in the projectile launching tube of a weapon 

is typically a complicated two-phase flow where combustion products are mixed 

with unburned propellant grains.  A detailed calculation of the flow field in 

the gun tube would provide important information such as local transient heat 

transfer rates and propellant burning characteristics.  This information would 

contribute to the understanding and solution of problems associated with gun 

barrel erosion and catastrophic gun failures.  The present work is an extension 

in the development of the computer code ALPHA (Ref. 1) which solves the governing 

equations for the two-phase, two-dimensional flow in a gun tube. 

Other efforts in modeling the flow phenomena in guns include quasi-one- 

dimensional inviscid two-phase flow analyses of the propellant combustion process 

(e.g., Ref. 2-7), a two-dimensional inviscid two-phase flow analysis (Ref. 8), 

and time-dependent boundary layer analyses applied to the flow of propellant 

gases in a gun tube (Refs. 9 and 10).  The boundary layer procedures suffer from 

the shortcoming that the starting conditions near the projectile base are not 

well defined, and according to conventional boundary layer theory the heat flux 

near the base approaches infinity because the base is a singular point (Ref. 10). 

Furthermore, the validity of the boundary layer approximations is questionable 

at both the breech end and the projectile base region, and even the most 

sophisticated boundary layer analysis presently used for gun barrel problems, 

e.g., Refs. 9 and 10, did not consider the two-phase flow aspects of the 

propellant combustion process.  The significant features of the two-phase flow 

interior ballistics codes (Refs. 2-7) were reviewed by Kuo (Ref. 11).  The main 

objection to these analyses (Refs. 2-7) would seem to be the presumption of 

quasi-cne-dimensional flow and the attempt to predict heat transfer to the barrel 

using rather simple unsteady boundary layer models or correlation formulas. 

The twc-dimensional analysis of Gough (Ref. 8) utilizes an explicit two-step 

time-dependent algorithm due to MacCormack (Ref. 12) with upwind spatial differ- 

encing modifications suggested by Moretti (Ref. 13).  The coordinate transfor- 

mation technique used in Ref. 8 is based on the method of Thompson, et. al. 

(Ref. 14).  The initial work of Ref. 8 considers only a stationary coordinate 

system to model the ignition process in a closed chamber with geometrical 

complications such as a hemispherical breech closure plug and a boattail 

projectile intrusion.  According to Ref. 8, this stationary coordinate system 



would be transformed to a moving system via a solid phase Lagrangian transfor- 

mation so that the mesh moves with the particles.  It is not known if this 

technique will give accurate results when projectile motion is included in the 

calculation.  However, since the governing equations in Ref. 8 were written in 

nonconservation form, significant coordinate motion may pive rise to mass 

sources due to time truncation error introduced by a moving mesh as demonstrated 

by Thomas and Lombard (Ref. 15).  Furthermore, if the mesh motion is governed 

by the solid particle motion,inadequate resolution may result in certain areas 

of the computational domain.  Finally, prediction of barrel heat transfer with 

an inviscid core flow analysis would require potentially inaccurate unsteady 

boundary layer models as in the quasi-one-dimensional analyses. 

The complex nature of the flow in the projectile base region and in the 

breech end of the barrel does not permit simplifying approximations to be made 

in the governing fluid flow equations, and therefore in principle the solution 

of the full Navier-Stokes equations is required, rather than some simpler 

approximate set of equations.  Fortunately, recent developments in computational 

fluid dynamics have made possible the prediction of the detailed flow field in 

configurations such as a gun barrel using the full Navier-Stokes equations. 

The equations and coordinate system developed under this effort have been 

incorporated into an existing three-dimensional time-dependent compressible 

Navier-Stokes calculation procedure (the MINT code) which was originally 

developed under United States Navy and Air Force sponsorship for other purposes 

by staff members of Scientific Research Associates, Inc. (Refs. 16-19).  The 

MINT procedure solves the governing equations using a consistently-split, 

linearized, block-implicit numerical scheme (Ref. 20). 

Under a previous effort (Ref. 1) a mathematical model of a two-phase, 

two-dimensional flow was developed and a computer code (ALPHA) was constructed 

for the numerical solution of the equations resulting from this mathematical 

model.  The model developed consists of the governing equations for an axisymmetric, 

two-phase flow in a gun tube with a rotating projectile, and a system of consti- 

tutive relations describing the molecular viscosity and thermal conductivity, 

turbulence length scale, gas equation of state, intergranular stress, interphase 

drag, interphase heat transfer, and solid phase combustion.  The governing 

equations and corresponding initial and boundary conditions described the firing 

cycle beginning with a fluidized and ignited solid phase, and ending with the 



projectile exiting the gun tube.  Chemical reactions within the gas phase were 

excluded from the formulation.  An axisymmetric time-dependent adaptive coordinate 

system for interior ballistics flow field calculations was developed, and the 

projectile and distinct filler elements were treated using a quasi-one-dimensional 

lumped parameter analysis. 

Under the present effort the ALPHA code has been modified to include both 

an ignition model to permit computation of the complete firing cycle and the 

capability to treat geometries in which the tube radius is a function of axial 

distance.  An efficient procedure for mass storage and/or large core memory 

utilization for the ALPHA code dependent variable array and the block-tridiagonal 

matrix inversion array was implemented and made operational.  Further, an 

existing SRA capability for velocity vector and contour plotting of ALPHA code 

output was made operational on the BRL computer system.  The moving coordinate 

system capability in the previously developed ALPHA code (Ref. 1) was observed 

to have truncation error produced mass sources associated with the form of the 

governing equations utilized.  This observation of truncation error produced by 

moving meshes is consistent with the findings of Thomas and. Lombard (Ref. 15), 

who suggested reformulation of the governing equations in strong conservation 

form along with a special technique for determination of the local time-dependent 

Jacobian determinant of the coordinate transformation.  Therefore, under the 

present effort the governing conservation equations were reformulated in a strong 

conservation form by application of a Jacobian transformation to the equations 

in cylindrical-polar coordinates.  The resulting computer code has been desig- 

nated as ALPHA2. 



THEORETICAL ANALYSIS 

Approach 

The governing equations for a two-phase two-dimensional flow in a gun tube 

which were originally presented in vector form in Ref. 1 are repeated below for 

completeness.  The provision for a rotating projectile is considered by solving 

the azimuthal momentum conservation equation with the appropriate boundary 

conditions at the projectile base.  The governing equations may be obtained by 

employing either the time-averaging procedure utilized by Ishii (Ref. 21) or 

the formal averaging approach used by Gough (e.g., Refs. 22,23) or Gough and 

Zwarts (Ref. 24).  In the present derivation, the averaging procedure of Gough 

(Ref. 22) has been selected because of its notational convenience; however, 

extensive reference to the work of Ishii (Ref. 21) has been made in order to 

verify the results obtained.  In the following analysis, a gas-solid mixture 

is assumed with a constant solid phase density, p .  Numerous assumptions and 

approximations are required in order to formulate a tractable problem.  Most of 

the required assumptions have been stated previously by Gough (e.g., Ref. 2), 

and those necessary in the present work are: 

(1) The gas and solid phases occupy separate complementary regions, and within 

each region the material may be treated as a homogeneous continuum. 

(2) The flow of the heterogeneous mixture, composed of the two interacting 

continua, can be described by appropriately defined averages of the flow 

properties. 

(3) If solid phase combustions occurs, the energy deposition is taken to be 

in the gas only. 

(4) The solid phase is deformable and incompressible.  However, locally no 

relative motion between the solid particles is considered.  Thus the average 

stress in the solid phase is an isotropic normal stress. 

(5) The influence of solid phase deformation on the particle surface area is 

neglected, and the interfacial average of the particle velocity is equal 

to the volume average in the absence of burning. 

(6) The interphase drag is determined from steady state correlations; the 

unsteady virtual mass effect is not considered. 

(7) The interphase heat transfer is determined from steady state correlations. 



(8) The Noble-Abel equation of state is employed.  The specific heats 

(c  and c ) are taken to be independent of temperature, 
p     v r r 

(9) The regression rate of the surface of the burning propellant is a function 

of the average gas properties and the propellant surface temperature. 

(10) Heat transfer to the solid phase is treated as a one-dimensional process 

in order to determine the propellant surface temperature, 

(11) The pressure drop at the gas-solid interface is negligible. 

Governing Equations 

Both Ishii (Ref. 21) and Gough (Refs. 22, 23) have presented the relations 

for the average of time and space derivatives in a two-phase mixture.  Using the 

above assumptions a system of partial differential equations is obtained con- 

taining interface-averaged source terms arising from averaging the basic conser- 

vation equations for the two-phase mixture,  A basic quantity used to describe 

a two-phase mixture is the porosity, a, i,e,, the ratio of volume occupied by the 

gas phase to the total volume,  Ishii (Ref, 21) introduces several averages which 

are required in the present analysis.  Gough (Ref. 22) introduces a general 

weighting function g(y-x,T-t) which reflects the influence of remote points (y,T) 

on the average value at (x,t).  By definition, the Gough average gives 

/ g(x,t) dxdi = | 

QllV.t (1) 

The porosity is defined by 

a(x)t)= j    g(y-x , T-1) dy dr 

(2) 

V gas 

The weighting function, g, plays a role similar to the state density functions 

(K.,   M., M ) introduced by Ishii (Ref. 21, p. 65),  The basic time average 

introduced by Ishii (Ref, 21, p, 68) is denoted by a single overbar (if), and 

this is equivalent to Gough's (Ref, 2) unnormalized average.  The phase average 



denoted by a double overbar (ijj) is related to ip  by 

\i/ =  — = — /  g( y-x, r-t) V/(y,T) dydr 
a   a -^ 

gas 
(3) 

Eq. (3) defines the average of a gas property, ty,   since the integral is carried 

out over the region occupied by the gas phase, V   .  In Ishii's approach the 
gas 

equivalent average is obtained by integrating only over the time interval for 

which the gas phase is present at the space point x.  Finally, the mass weighted 

average for a property of the k -phase ^. is defined by 

This average is also known as the FavrS average, hence the superscript F is 

used.  This is a very convenient average to use in turbulent flow since density 

fluctuations may be  eliminated formally.  It should be noted that the quantity 

p, is the partial density of k -phase while p. is the actual density, so that 

the mixture density is given by 

2 

(5) 
m  k=l k  k=| k k 

where a, = a, and a9 = 1-a. 

In the following equations, the Favr^ average is introduced where it is 

appropriate, and phase average values are used otherwise. The Favre-averaged 

velocity vector is written as 

SF .u 
(6) 

10 



and on all other variables (e.g., e, h, etc.) the superscript F is dropped for 

convenience.  The fluctuating component of any variable is denoted with a 

superscript prime, ij/.  All quantities pertaining to the solid phase are denoted 

by the subscript p.  The derivation of the equations is discussed in some detail 

in Ref. (1) and will not be repeated here.  The resulting equations are 

Gas Phase Continuity 

diap) 
-ar~ + v-cci^u) = r, + Mig 

(7) 

Solid Phase Continuity 

ad-a)        r .-,      r 
at L PJ      p 

(8) 

where the mass source, r, is due to propellant burning and M,  is the rate of 

mass addition due to primer discharge. 

Gas Phase Momentum 

diapU) _^ _ r -. 
——    +V-(a/DUU) = -aVp +V-[a(Tr + TT' )| 

-(i-a)ie- <?>' + upr +Mig-uig (9) 

Solid Phase Momentum 

i^lf&l  +v[(l-a)»OpUp] .-(l-a)Vp 

+ v[(l-a)R] +(l-a)^- <?>' -upr (10) 

11 



T 
In the above equations, TT and TT   are the average stress tensor and the 

turbulent stress tensor in the gas phase, respectively, IR is the average 
T 

granular stress tensor, and TT  is the solid phase turbulent stress tensor. 
T     " 

For the present time TT  will be neglected because there is insufficient 

information available to construct a constitutive relation for it.  The 
->- i ■*■ 

quantity <¥>     is the interfacial drag force and U.  is the primer gas velocity 

Gas Phase Energy Equation 

In the present formulation it is desirable to write the energy equation 

in terms of the mass-averaged static enthalpy h because of simplifications 

in the turbulence time-averaging. 

 ^  +V-(a^Uh)=-V-[a(q+qT)J 

+ — (ap) +0^+ api + A + Mig(hig+ y^g-ITig 

(11) 

where $ is the mean flow dissipation defined in Eq. (28), e  is the turbulence 

kinetic energy dissipation rate, Eq. (50), h.  is the enthalpy of the primer 

gas, and A is the energy transfer term between the solid and gas phases, 

Eq. (29). 

Turbulence Kinetic Energy Equation 

In the present work a turbulence kinetic energy equation and a specified 

length scale equation has been utilized.  Following the derivations of Refs. 

(25-26) and Ref. (1), one obtains 

diapk) _ n 
+ V-fa^uk)   -   V- (a -^ Vk) 

d\ cr. 

+ a     ^T[2D:D- ^-(V-U)2]- ~pk\>-Vi pe\   +   S 
k (12) 

12 



where S, is an interphase turbulence production term, Eq. (68), and k is the 

mean gas phase turbulence kinetic energy 

2 (13) 

Gas Phase Mixture Molecular Weight and Specific Heat Equations 

In the present two-phase flow analysis the gas phase species and gasified 

propellant species mass fractions are not required.  Therefore, in order to limit 

computer requirements the individual species mass conservation equations are not 

solved, but rather only total gas and solid phase continuity equations are solved, 

Therefore, it is necessary to consider transport equations for the inverse 

mixture molecular weight (Z) and the specific heat at constant pressure (c ) : 

— (a^Z) +V-(apUZ) - V-[armVz] + Zpr 
(14) 

where T     is the turbulent exchange coefficient for species diffusion which is 

defined from a knowledge of the Schmidt number in the turbulent flow of gas 

mixtures, 

r     ^eff 
m " Sceff (15) 

and Sc c~  is generally taken as a constant, Sc „ = 0.9.  The effective viscosity, eff   0      J '   eff J 

(j ,-,-, is defined by Eq. (56).  Further, Z  is the inverse molecular weight of 

the propellant and T  is the mass source due to propellant burning,  Eq. (18). 

A similar transport equation may be derived for the specific heat by 

assuming that the species specific heats are independent of temperature: 

-irL+v.(a^cp)=v[armvcp]+(cp)pr (16) 

where (c )  is the specific heat at constant pressure of the propellant. p p r r     r 

13 



Particle Radius Equation 

The average particle radius, r , is required as a function of spatial 

location and time for the constitutive relations specified below.  The appro- 

priate equation including turbulent diffusion is 

1   at       +v-[(|-a)VVp] 
V-[(|-a)rmVrp]-{l-a)^p(l + rp^-)<d> i 

(17) 

where the relation for T,   Eq. (18), has been incorporated in order to cast the 

equation for the average particle radius r  into the above form. 

Interfacial Mass Transfer 

Following Ref. (22), the mass source due to propellant burning may be 

written 

r =(l-a)^L <d>' 
P (18) 

where S  is the average particle surface area, V  is the average particle 
■ i 

volume, and <d>  is the average regression rate of the solid phase, Eq. (79). 

Stress Tensors 

The gas phase stress tensor assuming a Newtonian fluid is 

Tf   = 2^\D   - ( ~ ^  - K W-UII 
v o »/ (19) 

where K^ is the bulk viscosity coefficient and TO is the total deformation tensor 

(or rate of strain tensor) given by (Ref. 21, p. 164) 

D = D u + D ■ 
5     ' (20) 

14 



where ]D. is the bulk deformation tensor, 
b 

[Db ~ Y[(V0) + (v0)T] (21) 

and ID. is the interfacial deformation tensor which is difficult to model 
i 

except for a dispersed flow (Ref. 21, p. 165), hence it must be neglected at 

present.  The turbulent flow stress tensor in the gas phase is modeled 

using an isotropic eddy viscosity formulation, i.e.. 

TT
1
 = -pu'u' = 2firD --|-(/iT7.U + pk)li 

(22) 

where k is the turbulence kinetic energy, Eq. (13).  The turbulent viscosity 

p  must be determined using a suitable turbulence model. The solid phase 

granular stress tensor, R, is modeled by assuming an isotropic normal 

stress, i.e., 

R = RplE 

(23) 

hence in the solid phase momentum Eq. (10), 

V-[(l-a)R] - v[(l-a)Rp] (24) 

Heat Flux Vectors 
  -»■ 

-►T . 
The mean heat flux vector q and the turbulent heat flux vector q  ma 

two-phase flow may be written as (Ref. 21, p. 165) 

q = -K[VT- — (T. -T)J (25) 

and 

15 



qT = --T[VT--^-(Ti-T)] 
(26) 

= T 
where K is the mean thermal conductivity, Eq. (48), K is a turbulent conduc- 

tivity, Eq. (57), and T. is the mean temperature at the interface between the 

phases. For the present time T. will be taken as the average between the gas 

temperature and the particle surface temperature, i.e. 

1   2      PS (27) 

and T  will be determined from the solid phase heat conduction model, 
ps 

Mean Flow Dissipation 

The mean flow dissipation term appearing in the energy equation, Eq. (11), 

is defined as 

$ = 2/J.ID :\D   -(-I"/!- KB)(V-U): (28) 

Interfacial Energy Transfer 

Following Gough (Ref. 22), it can be shown that the interfacial energy 

transfer term in Eq. (11) is 

A = - p(u-Up)-Va 

+ (|-a)-^ (U-U )• <F>' +q-Va 
P 

_(l_a)_JL <q>i + r[hcomb+-(u-up)-(u-up)]   (29) 

p 

where <q>  is the interfacial average heat transfer between the gas and solid 

phases, Eq. (78), and h  u   i-s   the  energy released (per unit mass) due to 

16 



combustion of the solid propellant. 

Further details on the derivation of the interphase transfer terms in 

Eqs. (7-17) may be found in Refs. (21-22), and a summary is given in Ref. 1. 

In the present analysis Eqs. (7-17) are solved in conjunction with Eqs. (18-29) 

and the constitutive relations for <d> , <F> , <q> , y, y , 1C, K and K , which 

are given in a subsequent section. 

Solid Phase Heat Conduction Equation 

Since the solid particle surface temperature is desired to determine 

ignition, the propellant burning rate, and the rate of heat transfer between the 

gas and solid phase, a transient heat conduction equation must be solved. 

Gough (Ref. 2) and Kuo, et al., (Ref. 4) assume that the penetration depth of 

a thermal wave into the propellant grains is small compared to the grain dimen- 

sions.  Then it is permissible to use a one-dimensional approximation (planar 

for cord propellant or spherical for spherical propellant grains) to obtain the 

particle surface temperature.  Following the motion of a given particle (Kuo, 

et al., Ref.4), the heat conduction equation for a spherical particle is 

/dfp\      ap a2(r2fp) 
\dt /r      r2       dlz (30) 

where T = T  (f; x,t) is the phase-averaged temperature within a representative 

particle, r is radial coordinate within the particle, a  is the thermal diffus- 

ivity of the solid particles [a  = k /P (c ) 1, and (d/dt)~ denotes the 
P   P  P  P P r 

Lagrangian time derivative at constant f within the particle.  Since the surface 

of a representative burning particle is receding in time it is desirable to 

employ the following time-dependent transformation for the particle radial 

coordinate f: 

r 
C^TIT)   i o<C<i 

(31) 

Then  Eq.    (30) becomes. 

dTn\       /    C     drD V aTD aD     6 - 
P 

dt 

c V \d% 

rp 
dt , ' K cV^ 

(C  TD) (32) P 

17 



where   the  quantity 

dr 
RsE 

dl 
L = <d>, 

(33) 

may be identified as the average surface regression rate for the particle, 

The initial condition for Eq. (32) is 

R > 0 
s - 

TD(£,t = 0) - T po 
(34) 

The boundary conditions are 

(^ O.t) = 0   at  C=0 

(35) 

^-^(^ = 1,1) = hc(i)[f-fps]+qrQd + kp^(Rs,p)      at     ^ 
(36) 

where q  ^ is the net incident radiation heat flux normal to the particle 
RAD 

surface, k  is the thermal conductivity of the solid particles, and ^(R ,p) 
P s 

is the heat feedback from the flame identified by Gough (Ref. 2, p. 57). 

Assuming that the gas is nearly in radiative equilibrium so that the gas 

emissivity is unity, and that radiation emitted by other particles does not 

influence the particle in question, we obtain 

q"-  = ^(T4- V) 'rod (37) 

where e  is the particle emissivity.  Other authors (e.g., Refs. 2-4) have 
P 

cast Eq. (37) into a heat transfer coefficient form, so Eq. (36) becomes 

18 



^^U = i.<)  ■ Vt)[T-Tps] + kp4>(Rs.p) (38) 

where  the  total  heat   transfer  coefficient   is 

h,   -   hc  + Cpcr(?  +Tps)(T
2 + fp

2
s) 

(39) 

The convective heat transfer coefficient, h , is specified via a constitutive 
'  c 

relation, Eq. (77).  An expression for (f) (R ,p) has been presented by Gough 

(Ref. 2) for a planar geometry under the assumption that the flame zone 

surrounding the burning particle remains quasi-steady, and that the convection 

and radiation heat transfer terms in Eq. (36) are zero.  It then follows that 

^ = ^7(Tps-fpo) (40) 

where a  is the thermal diffusivity of the particles and T  is the undis- 
P ^       r po 

turbed temperature far from the particle surface.  In the context of spherical 

particles, T  would be taken as the temperature at the center of the particle, po r r 

This procedure should be sufficiently accurate in view of the other assumptions 

made in obtaining Eq. (40). 

In the ALPHA2 code, Eqs. (34-37, 40) have been utilized.  Solution of 

this solid phase heat conduction model requires special consideration since it 

is in Lagrangian form, whereas all other differential conservation equations 

are in Eulerian form.  The method to be employed in the present analysis will 

be described in the section on Solution Procedure. 
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Constitutive Relations 

The necessary constitutive relations include a gas phase equation of state, a 

caloric equation of state, a turbulence length scale distribution, the molecular 

viscosity and thermal conductivity, the so-called form functions for the surface 

area and volume of the solid particles, an intergranular stress relation, inter- 

phase drag and heat transfer relations, and a burning rate correlation for the solid 

phase combustion.  In the following, the double overbar ( ) is dropped for simplicity. 

Gas Equation of State 

The Nobel-Abel equation of state will be used for the gas, 

pil-pr))-  ^-y- = pZJ (AD 
m 

where R  is the universal gas constant, W  is the gas molecular weight, and n is the u 0 '  m o  >     i 
covolume factor, which is composition dependent.  Following Cough (Ref. 2) an arith- 

metic average will be used for n based upon the propellant properties. 

The caloric equation of state is taken as 

e = cvT 
(A2) 

where c  is dependent on the gas composition but not temperature.  The static en- 

thalpy is then 

•: 
p ZT (A3) 

h = e + — =cT + p v    , 

The specific heat at constant pressure is 

ah , (44) 
C
P 

E aTlp   = cv + z 

so that Eq. (43) may be written as 

h = c T + ^p 
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Molecular Viscosity, Bulk Viscosity, and Thermal Conductivity of Gas 

The molecular viscosity for the gas is determined from Sutherland's law, 

^ I    T    ^^   T~+SL (46) - -fJLf   Jo 
H-o \  To   I T + S, 

where S1  = 110oK for air. 

The bulk viscosity for the gas will be assumed to be zero at present, 

KB « 0 (47) 

The thermal conductivity may be determined from a relation similar to 

Sutherland's law, e.g., 

T \3/2 T0+S2 
(48) 

where S  = 1940K for air. 

Turbulence Model Relations 

The turbulent viscosity introduced in Eq. (22) is obtained from the Prandtl- 

Kolmogorov relation, viz. 

^r =  Cp-~1~ (49) 

and the dissipation rate is given by 

_ 3/2 

? - C
3M JL_ (50) 
>   i 

where the turbulence length scale, £, must be specified consistent with the expected 

turbulence structure in the two-phase flow.  Following Ref. 27 the constant o will 

be taken as 

o-k = 1.0 (51) 

The very large fluid accelerations experienced in the interior ballistics 

problem require the consideration of both forward and reverse transition of 
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the turbulent flow near solid surfaces.  There are two options available for niodel- 

ing the turbulence near a wall.  In the first, grid point resolution normal to the 

wall must be sufficient to define the viscous sublayer, in which case the boundary 

conditions are relatively straightforward.  However, the difficulty with this ap- 

proach is that the physics of low Reynolds number (transitional) turbulence must be 

modeled in a reasonable manner by the governing turbulence equations (e.g., Jones and 

Launder, Ref. 27).  An alternative approach is to employ a less refined mesh and 

force the turbulence variables to yield values consistent with a boundary layer wall 

function formulation at the first grid point away from the wall.  The difficulty 

with this approach is that the validity of the wall function formulation is question- 

able under the rapidly accelerating transient flow situation present in the interior 

ballistics problem.  Furthermore, recent experience at SRA indicates that the wall 

function approach may be inadequate for a reacting unsteady flow with moving coordi- 

nates.  Therefore, a transition model, which was sucessfully used by Shamroth and 

Gibeling (Ref. 28) in a time dependent airfoil flow field analysis, has been imple- 

mented in the computer code.  The analysis of Ref. 28 follows the integral turbulence 

energy procedure of Refs. 29-31, by utilizing a turbulence function a , where 

a, =C/1
l,2/2 (52) 

and a  is taken as a function of a turbulence Reynolds number of the form 

f(RT) 

100 1.0 + 6.66 a 
f(Rr) 

100 
(53) 

where 

a0 = .0115 

f(Rr) • 100. R/22   R < | 
(54) 

• 

f(RT)   = 68.1 RT   +614.3 RT>40 

and a cubic curve was fit for values of R between 1 and 40.  As previously discus- 

sed, Ref. 29-31 utilized an integral form of the turbulence kinetic energy and 

therefore R was defined as an average value. 
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I     r8 /l    r
8s 

R
T- Tic   "TVT/O    "^ (55) 

In the present effort R was defined as the local ratio of turbulent to laminar vis- 

cosity, a was evaluated via Eq. 53 and C related to a, via Eq. 52. 
1 ^ y 1     M 

The effective viscosity is defined as the sum of the laminar and turbulent 

viscosities 

Meff " /X+/XT (56) 

The effective conductivity will be modeled using an effective Prandtl number obtained 

from knowledge of turbulent flows of gases and gas mixtures, i.e., 

-.,. ^ + *
T - ^« (57) 

Kreff 
and PTeff  =0.9 for air. 

Turbulence Length Scale 

For the evaluation phase of the present effort, the turbulence length scale 

would be chosen based upon known steady state relations.  In particular, the length 

scale would be taken as the minimum of the length scales based upon the local average 

distance between solid particles, the local value computed from turbulent pipe flow 

correlations, and that from turbulent boundary layer length scale distributions when 

close to the wall. 

The turbulent pipe flow mixing length model is based on the correlation of 

Williamson (Ref. 32), 

^T 

n f y \     /,    y \ 
(58) 

where jv is the local pipe radius, y is the distance from the point in question to 

the nearest wall, and the constant C  is taken as 
w 

C  = 0.14 (59) 
w 
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The near wall region mixing length is obtained from the Van Driest model (Ref. 33), 

£^ = /cy[l-exp(-y+/A+)] (60) 

where K  is the von Karman constant and A is the van Driest damping coefficient, 

K  = 0.4 (61) 

A+= 26.0 

The nondimensional distance y is defined as 

and the friction velocity u in the present analysis is taken as 

"T=m 1/2 (63) 

where  the  local shear stress  T     is  obtained  from 

r£   -- ( 2h^yld (64) 

The average center to center distance between solid spherical particles 

assuming dense packing is approximately 

1/3 

Therefore, the minimum distance between particle surfaces is 

V-^C^p (66) 
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and the turbulence length scale will be assumed proportional to the distance £ 
P' 

viz. 

A^/V p-^p (67) 

The constant 3 should be selected based upon empirical observation of the turbulence 

structure in two-phase flows with solid particles. 

Interphase Turbulence Production 

The interphase turbulence production term S  in Eq. (12) may be inter- 

preted as the production of turbulence kinetic energy in the gas phase due to 

gasification of solid particles (Ref. 1), 

Sk ~ ^psr (68) 

where k^  represents an average value for 1/2 (u'• u') at the gas-solid inter- 

face.  It is not known how to specify k s at the present time, and consequently 

until further information becomes available k  =0 
ps 

Form Functions 

The surface area and volume of particles have been presented by Cough 

(Ref. 2) for a variety of propellant types.  In the present work, spherical 

propellant grains will be considered, hence 

w     4     3 

SP = 4-rp 

(69) 

where r^ is the mean particle radius at a given point in space and time. 

Other propellant types could easily be considered within the present framework. 
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Intergranular Stress Relation 

A stress relation for granular propellant has been given by Gough (Ref. 2), 

Koo and Kuo (Ref. 3), and Kuo, et al., (Ref. 4) for the case when the average 

stress R is independent of the loading history; 

2 ac-a  a- 
Pp0P   (I-a)  a 

R, 

if a < a, 

(70) 

if a > a. 

where a  is a critical porosity above which there is no direct contact between c 
particles, and a  is the speed of sound in the solid phase specified on input. 

tt i 

Interphase Drag Relation 

The average steady state interphase drag <F>J' appearing in the momentum 

equations, Eq. (9-10), was obtained from correlations for nonfluidized (packed) 

regions and fluidized (dispersed) regions.  Gough (Ref. 2, p. 48) recommended 

the following drag correlation, valid for high particle Reynold's numbers. 

Re >>1, which is based on Ergun's (Ref. 34) correlation for a packed bed and 

modified by Anderssen's correlation (Ref. 35) as the bed becomes dispersed. 

<P>i . ^^ f 
(71) 

with 

0.45 

a < a, 

ac < a < c^ 

a < a < I 

(72) 

where  a     is   the  settling porosity  and  a     is  given  by 

1+ 0.01986 
I -a. 

a. 

(73) 
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Also, U is the relative velocity between the gas and solid phases, i.e., 

VO-Up (74) 

and the particle Reynold's number is 

R     ^P^'UR' (75) 

Gough (Ref. 8) has noted the potential source of error due to the presence of 

relatively few propellant grains in the radial direction of a typical medium 

caliber weapon (15-20 cm. diameter), since the available correlations are based 

on flows through long columns where end effects are negligible. 

Interphase Heat Transfer Relation 

For convective heat transfer between the gas and solid particles in interior 

ballistics calculations, numerous correlations have been recommended (e.g., 

Refs. 2-4, 7).  Gough (Ref. 2) advocates the Gelperin-Einstein correlation (Ref. 36) 

for the interphase heat transfer with granular propellant in both fluidized and 

nonfluidized regions.  The Nusselt number for this correlation is (Ref. 2) 

Nup - 2.0 + 0.4Rep/3 Pr"3 (76) 

where Pr = yc IK  and K is the gas phase thermal conductivity, Eq. (48).  The 

heat transfer coefficient in Eq. (36) is then 

hc= ir NUP (77) 
p 

This relation is considerably simpler than the Denton and Rowe-Claxton correlations 

utilized by Kuo, et al. (e.g., Refs. 3, 4), and may yield equally reliable predic- 

tions in view of the large variations between experimental data and the existing 

correlations (Ref. 2). 

Finally, the interphase heat transfer relation required in the energy equa- 

tion source term, Eq. (29), is 

<q>1 = ht(T-fps) (78) 

where h  is given by Eq. (39). 
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Burning Rate Correlation 

The steady state surface regression rate (d > 0) is given by (e.g., Ref. 2) 

ds = B, + B2p
n (79) 

where B , B„ and n have known constant values.  The phenomenon of erosive burning 

is assumed to be an acceleration of the burning rate due to the influence of con- 

vective heat transfer on the heat transfer in the flame zone.  The Lenoir-Robillard 

(Ref. 37) regression rate expression is utilized for this effect, 

^E 
= as + KEhcexp 

(80) 

where K  and g  are erosive burning constants, determined experimentally.  The con- 

vective heat transfer coefficient is then obtained from Eqs. (77, 78).  At present 

only the steady state burning relation, Eq. (79), has been incorporated into the 

computer code. 

Filler Element and Projectile Motion 

In the present analysis filler elements and the projectile are treated dis- 

tinctly.  No transverse deformation of the filler elements is permitted and elements 

are assumed to remain planar; therefore, a quasi-one-dimensional lumped parameter 

formulation (e.g., Ref. 2) may be employed for the filler elements.  The appropriate 

equations, which have been stated by Gough (Ref. 2) are repeated here for complete- 

ness.  It is assumed that there are N filler elements between propellant bed and 

the base of the projectile, with the projectile denoted as element (N+l).  The 

required properties for each element are the mass (M.), the resistance force op- 

posing motion (F.), an internal stress (a.), and a normal wall reaction force (Fw.) 

for incompressible elements in a variable area tube.  The cross-sectional area of 

each element is assumed to be equal to the local tube area, and the stress in an in- 

compressible element is assumed to be isotropic. 

A momentum equation is then written for one-half of element i together with one- 

half of element (i-1) in order to describe the motion of the interface location, z . 

There results 

— M.z, ^A.cr.-A^-- +- (81) 
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2"(MJ-i + Mi)2i = A.cri-Ai-I^i-, T(Fi + F.-|) 

^{F*>+F*J lor        2 < i < N 
(82) 

(MN+. + ^)^+, - -\%-[ FN + 1 
+ 

w. 

(83) 

In this section the stress o. is taken as positive in tension following Gough (Ref, 

2), and the term (-A o ) in Eq. (81) is the force exerted on the first filler ele- 
o o 

men t by the gas and propellant particles.  The mass of the projectile Bt. . is 

assumed to be corrected for rotational inertia; if I, D  and 6 are the polar moment 

of inertia, the tube diameter and the angle of rifling, respectively, it follows 

that 

M n+i = KJact 
41     2o 

(84) 

The normal wall reaction is given by 

/ 

Wj 

0 if element i is not incompressible 

/ dA \ 
(z,  -Z.)cr.    if element i is incompressible 1+1  '  ' \ dz /1 

(85) 

Constitutive data must be provided for the stress a. for elastic elements or for 
i 

plastic elements in a state of loading (i.e., z.>z   ); however, for rigid elements 

or plastic elements in a state of unloading (z-z   ), one has 

^i80 « V^i-H 
(86) 

Finally, for an incompressible element, i, one has the continuity relation. 

AiZ; = Ai+1zi + 1 (87) 
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Primer Discharge 

The primer discharge model is implemented as an external source of mass, 

momentum and energy into the gas phase in order to ignite the propellant grains. 

The general functional form of these source terms is 

"U.  ="U. (x.,t) (88) 
ig   igv i'1' 

h.  = h. (x. t) 
ig    igVAi'u 

In practice the primer source is added only in a small region near either the tube 

centerline for a center core igniter or the breech end for a base igniter. 
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COORDINATE TRANSFORMATION 

The set of governing partial differential equations which model the physical 

processes occurring in interior ballistics problems was presented in the previous 

section.  For generality these equations were written in vector notation; however, 

before these equations can be incorporated into a computer code, a coordinate 

system must be chosen.  The governing equations can then be cast in a form reflect- 

ing the choice of the coordinate system.  The coordinate system for interior bal- 

listics calculations must have the ability to enlarge the physical extent of the 

computational domain as the projectile moves through the gun barrel, and it must be 

capable of treating breech geometries in which the tube radius is a function of 

axial distance.  Also, a time-dependent transformation is required to adapt the 

computational mesh to regions of large radial gradients appearing during the igni- 

tion phase of the firing cycle.  The form of the governing equations appearing in 

Ref. 1 produces mass sources due to time truncation error when radial mesh motion 

is included in the calculation.  This observation is consistent with the findings 

of Thomas and Lombard (Ref. 15), and appears to be due to an inconsistent calcula- 

tion of the overall transformation Jacobian in the nonconservation form of equations 

(Ref. 1). 

In order to permit consistent calculation of the Jacobian in a moving coordi- 

nate system, the governing equations should be transformed with a Jacobian trans- 

formation of the form 

yJ = yJO^Xg.Xj.n (89) 

T t 

where (x  >:  x ) = (r, 6, z) are the original cylindrical polar coordinates 

suitable for a gun tube.  The velocity components remain the components,('-^, U  U ) 

in the (x , x„, x ) coordinate directions respectively.  The new independent variables 

yJ are the computational coordinates in the transformed system.  The coordinate 

system requirements for interior ballistics applications may be represented by a 

subset of the general transformation, Eq. (89), 

y1 = y'lx,,)^) (90a) 

y2 = y2(x2) (90b) 

y3 = y3!*,, x3,t) (90c) 
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which is a general axisymmetric time-dependent transformation.  For interior bal- 
2 

listics flows which are axisymmetric, Eq. (90b) reduces to y  = X2 and a11 deriva- 
9 

tives 9/9y  are assumed to be zero.  The transformation (90) with the axisymmetric 

flow assumption has been utilized in the ALPHA2 computer code. 

Application of the Jacobian transformation requires expansion of the temporal 

and spacial derivatives using the chain rule, i.e., 

dt dr    +^    y't   ayi 
(91) 

and 

I y dx i'\ 

j ii (92) 

where 

'''       at 

(93) 

The relations Eq. (91-93) are first substituted into the governing equations (7-17) 

written in cylindrical polar coordinates.  Then the resulting equations are multi- 

plied by the Jacobian determinant of the inverse transformation. 

dx axi ax 

ay' ay2 ay3 

acxi.xg.xj) ax^ ax 2 ax2 

^(y'.y2^3) ay' ^ ay3 

a^ dx^ ax3 

ay' ay2 oy 

(94) 

and the equations are cast into a "semi-strong" conservation form using the follow- 

ing relations, 
3  aYJ; 

0 
3    a^i 
1 

J;I ay (95) 
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and A± + y    dJ^     - o 
dr       h      ayj 

where *] _   H   jyi. 

(96) 

(97) 
M. = • J 

The semi-strong conservation form implies that all factors involving the radial 

coordinate r = x1 remain as they were before the Jacobian transformation.  The 

resulting equations are presented in Appendix A. 

The geometric relations Eq. (95-96) may be obtained from the transformation 
i       i 

relations for y,-| and y, J.   in terms of the inverse transformation derivatives (e.g., 

Ref. 15), 

¥ ,1    X2)2 
X3)3 '" X2)3 

X3,2 

^.1 
^3,2 Al,3 ' A3)3 Al)2 y,2' x^9 xi^ '^T^^I 

Al      _     _       _    _ 
y  = x  x  - x  x 

,3    1,2   2,3    1,3  2,2 

y , = x„, x  -x  x 
,1     2,3  3,1    2,1  3,3 

A2    _    _   _ _   _ 
y ,2   X3,3 X|1l  ' X3,l Xl,3 

y ,3 : X|,3 X2,l " X|,l X2,3 

A3  _ —    -     -   - 
y ,1 ' X2,l  X3,2 "" X2,2X3,I 

^,2 = X3,l Xl,2  " X3,2X|,I 

A3    -    -    _ -   - 
y   ,3 " X|,l  X2,2   X|,2 X2,l 

(98) 
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and 

A ; 
y ^ " ~A y,k kT\   ''* ar (99) 

The projectile motion is assumed to be in the Xn-direction, hence the follow- 
3 3 

ing normalized nonuniform coordinate, n (y ), is introduced: 

where z  is the Cartesian location of the breech end of the gun barrel and zn is the 
3 1 

Cartesian location of the first filler element and y  is an equally spaced com- 
3 

putational coordinate having a value from 1.0 to y    .  A similar transformation 0 max 
can be implemented for the radial coordinate, x., to permit the tube radius to 

vary with axial distance, and to allow a concentration of grid points in the x..- 

direction as a function of x- and time t.  The latter feature would permit the 

concentration of x -direction grid points in the manner shown in Fig. 2,  to account 

for a variation of the boundary layer thickness as a function of x  and t as the 

projectile moves through the barrel.  As can be seen in Fig. 2  the resulting 

coordinate system is nonorthogonal, however, such a system is already encompassed 

by the general transformation, Eq. (92).  Introducing a normalized nonuniform 

coordinate, 

1   y '      rrr0 (101) 

where r, = r, (x„) is the radial location of the tube wall, r  = r  (x„) is the 
113 o   o   J 

radial location of a centerbody if one exists, and y  is an equally spaced compu- 

tational coordinate having a value from 1.0 to y    .Of course, at the J max  1  1 33 

centerline of a tube r  =0.  The functional forms of n (y ) and of n (y ) are 
o _ 

arbitrary and can be chosen such that the packing of grid points in the x  or x„- 

direction is achieved in the regions where the largest gradients are expected. 

Presently the computer code allows for the concentration of grid points to occur 

by means of Levy's (Ref. 38) generalization of the Roberts' transformation (Ref. 39). 

The grid points can be concentrated at the boundaries of the computational domain or 

the grid points can be concentrated around some interior location.  The transforma- 

tion equation used for this purpose is 
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■n]-- ^j0+ ^sinh{c[ tanh(Ey+F)-H +
 D/ (102) 

where n is the value of n about which the concentration of grid points is centered 

and the values of A, C, D, E, F, G and H are controlled by the input parameters, 

%' ^ Tl an^ T2'  T^e derivation of the relationships between A, C, D, E, F, G 

and H and the input parameters is quite lengthy and hence only the results are 

presented here, viz.. 

where 

(103) 

(104) 

A   = 
sinh(t2) 

C - 
yj       -1 

MAX 

t, ' '"{^VM.K-VO)^'^^^-^)^ } 

and n  .  =0 and n    = 1. 
mm max 

. I+T, 
where ln 

S2 

F- s -E 

r 
T2-Tl 

MAX 

(105) 

D = t! - C (106) 

E = -f 4" (107) 
yj      I 
MAX 

Si =  —^— (108) 

^ Tz  ' (109) 

(110) 

yj   - ! dH) 

H = T - G (112) 
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The above is presented only for completeness; the important thing to note is the 

effect that rr", t„. x, and T0 have on the physical grid spacing.  The effect of t 
O I L £ z- 

is to regulate the sinh portion of the transformation, while T  and T^  regulate 

the tanh portion of the transformation.  Note that different parameter values may 

be specified for each of the coordinate directions x. in order to control the grid 

spacing in each of those directions; T  controls the physical grid spacing at the 

lower end (n"1 . ) of the computational domain while T  controls the spacing at the 
.mm 2 

upper end (r?       ).  The values of T, and T„ are subject to the following limitations 
^         max                 1     / 

-K T^O 

0<T2<l (113) 

t2>o 

In order to see how the input parameters effect the grid spacing it is instructive 

to first negate the effect of the sinh by setting t2 = 0 and to investigate the ef- 

fect that T  and T have on the transformation. If x  = 0 and x2 > 0 grid packing 

will occur at r?           (the larger the value of x the greater the packing) while if 
max 2 

T  < 0 and x  = 0 packing occurs at n^^ (the larger the value of jxj the greater 

the packing).  Zero values of x  and x  result in equal grid spacing while nonzero 

values of both x  and x2 result in packing at both nJmin and n ^^  If T1 = T2 and 

t =0 the transformation Eq. (102) is equivalent to the original transformation of 

Roberts (Ref. 39), and the parameter T2 is related to Roberts' normalized boundary 
1/2 

layer thickness -parameter o by x  = (l-o)   .  On the other hand if the effect of 

the tanh is negated by setting both T  and x  equal to zero, the effect is to con- 
ct 

centrate the grid points about n  only.  The larger the value of t  the greater the 

concentration.  Nonzero values of t„, x  and i     result in a combination of the 

effects of the sinh and the tanh transformations. 
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SOLUTION PROCEDURE 

The development of the ALPHA2 computer code is based upon an axisymmetric 

version of the highly efficient consistently split, linearized block-implicit solu- 

tion procedure (MINT) for the compressible Navier-Stokes equations developed by 

Briley and McDonald (Ref. 16-18), and subsequently extended to multi-component, 

chemically reacting, turbulent flows by Gibeling, McDonald and Briley (Ref. 19). 

This procedure solves the Navier-Stokes equations written in primitive variables; 

in the MINT procedure, the governing equations are replaced by either a Crank- 

Nicholson or a backward time difference approximation.  Terms involving nonline- 

arities at the implicit time level are linearized by Taylor series expansion about 

the known time level, and spatial difference approximations are introduced.  The 

result is a system of two-dimensional coupled linear difference equations for the 

dependent variables at the unknown or implicit time level.  These equations are 

solved by the Douglas-Gunn (Ref. AC) procedure for generating ADI schemes as per- 

turbations to fundamental implicit difference schemes.  This technique leads to 

systems of one-dimensional coupled linear difference equations which are solved by 

standard block-elimination methods, with no iteration required to compute the solu- 

tion for a given time step.  An artificial dissipation term based upon either a cell 

Reynolds number criterion or the rate of change of the dependent variable may be 

introduced selectively into the scheme to allow calculations to be performed at 

high local values of the cell Reynolds number. 

The use of an implicit solution procedure requires that equation coupling 

and linearization be considered.  Both of these questions are reviewed in detail 

by McDonald and Briley (Ref. 41) and Briley and McDonald (Ref. 18).  These authors 

have argued that for a given grid the errors arising from time linearization of the 

nonlinear terms at the unknown time level should be no greater than the discretiza- 

tion errors.  Also, reduction of the time step is the preferred way of reducing the 

linearization error since transient accuracy is thereby improved.  Linearization by 

Taylor series expansion in time about the known time level introduces errors no 

greater than those due to the differencing (Refs. 41 and 18), and this approach has 

been employed in the ALPHA2 code.  The formal linearization process results in a 

system of coupled equations in order to retain second-order temporal accuracy. 

The system of coupled equations at the implicit time level is solved efficiently 

using a standard block elimination matrix inversion scheme.  In the present problem, 

the strong coupling effects among the governing equations dictate the use of the 



block coupled equation approach.  However, weakly coupled equations would probably 

be solved in a decoupled manner in order to reduce computer time and storage 

requirements. 

The principal partial differential equations which will be solved via the 

MINT technique are:  gas and solid phase continuity, gas and solid phase momenta, 

gas phase energy, gas phase turbulence kinetic energy, gas phase mixture molecular 

weight and specific heat equations and the particle radius equation.  The constitu- 

tive relations required to close the above system of equations have been specified 

above.  The solid phase heat conduction equation is the only differential equation 

which requires special treatment because it is a Lagrangian equation. 

The scheme devised for solution of the solid phase heat conduction equation 

is unique since it does not involve the use of marker particles introduced by other 

authors (e.g., Ref. 2).  This is possible because the equation is a simple heat 

conduction equation for a representative solid particle moving at a velocity U 

which is known at the completion of a given time step.  The necessary boundary 

conditions, Eqs. (35-38), provide information about the environment through which 

the particle is moving in the form of a heat transfer coefficient, Eq. (39).  The 

procedure to be used assumes that at time t   the representative particle has moved 
. ,   .  ->n+l    , n+1  n+1 n+1  ,     ,    .      .   n i. • •. • 

to the grid point x. . . = (xr    x0  x~  >. from a location at time t which is 
i    j    k 

->n+l    -^n ->• 
determined from the known absolute particle velocities v   and v , i.e., if s  is 

P       P P 
the particle position vector relative to an inertial reference frome, we have 

V„ (HA) 
dt    P 

and application of the variable time differencing scheme yields, 

Jp"*'-?;+[/37pntl+(,-/3>7p'>' (us) 

where 3=1 for backward time differencing and 3 = 1/2 for Crank-Nicholson (centered) 
-y-n+1 

time differencing.  In the present scheme, s  " is assumed to be the grid point lo- 

cation x   , and Eq. (115) is then solved for s .  Because the grid is moving it is 
l.j.K P 

necessary to interpolate to fine the required value of the particle velocity at 
n .   -m+1   ->n  -KI ,->n+l    n,   r™  ,   ,       , ■ ^ ■ c   /■oc ■» 

time t  at space point x. . , , v  = v (x. . . , t ).  The boundary condition, Eq. (Jt.), 
i,I,k  P   P  i,J.K 

may then be written as 
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kA^,, , .-w/3 ^-Jf(M,.^)^[ht(t-,(f--T-)+V(Rrii  -,] 

+ (l-/3)[ht(t
n)(Tn-Tp

n
s ) + k ^(R^p")] (116) 

The desired properties h (t ) , f  , T II , and HR11. p") are understood to be 
^.t Ps        s 

evaluated at the point sn, and these will be evaluated by interpolation utilizing 

values at time t  at the four grid points surrounding point s . 
P 

Finally, the governing equation (32) and boundary conditions, Eq. (35) and 

(116) , may be written in finite difference form.  The resulting tridiagonal matrix 

is easily inverted using Gaussian elimination to yield the temperature distribution 

within the particle.  Another approximate solution technique could be incorporated 

at a later time in order to reduce the computer requirements for the particle heat 

conduction model. 

Initial and Boundary Conditions 

The initial conditions for the first phase of two-dimensional calculations 

will consist of a description of the fluidized state of the flow in a gun barrel 

after ignition is complete and the projectile motion has begun.  Typically, the 

necessary data would be produced from an existing one-dimensional interior bal- 

listics computer code, and would then be extended over the two-dimensional computa- 

tional domain by applying a correction for the wall boundary layers.  Provisionally, 

the boundary layer integral method adopted by Gough (Ref. 2) would be utilized to 

determine the boundary layer thickness and velocity profile. 

The boundary conditions to be applied would be no-slip gas velocities on 

solid surfaces and conventional symmetry conditions at the tube centerline.  The 

breech would be assumed to be stationary, and, of course, the projectile and filler 

elements would be allowed to move.  The wall pressure would be determined by employ- 

ing the normal gas momentum equation written at the wall.  The surface temperature 

would be determined by incorporating a barrel heat conduction model coupled to the 

gas heat transfer at the wall.  For simplicity, heat conduction in the barrel would 

be assumed to be primarily in the radial direction.  The porosity at a wall would be 

determined from either the solid phase continuity equation, Eq. (8), or a zero normal 

derivative condition.  The solid phase velocities at a wall would be determined 

from either the no-slip condition or the solid phase momentum equations written 

at the wall. 
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The appropriate boundary condition for the inverse mixture molecular weight 

(Z), specific heat (c ), and particle radius (r ) at a solid wall is zero normal 
P P derivative, i.e., 

\(3n /w  V an /w \ (3n /w ' 
w (117) 

This follows from the definition of these quantities as mass weighted averages, and 

the assumption that the individual species diffusion velocities normal to the wall 

as determined from Fick's law must be zero; that is, (3m./5n) = 0 where m is a 

species mass fraction. 

The solid particles which reach the wall will be assumed to be in equilibrium 

with the gas phase, thus 

ps w     w (118) 
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APPENDIX 

The governing conservation equations in cylindrical-polar coordinates are 
transformed using the Jacobian transformation, 

yj = yj(x,,x2) 73,1) 

(A-l) 

T = t 

where (x,, x2, x») = (r, 0, z).  The resulting equations may be written in the 
following compact form: 

a{jw) Z {     d    . .   \-~,       I [  n     d 

(A-2) 

where 

yjt - -^ **       at 

j dyj (A-3) 
y,i = -~ 

Further,   the  coefficients   B.,   Y.,   ?.   are given by 

^1        7m >      Q2   ~    ~T~ >    C3   = ! 

(A-4) 

and m = 1 for all equations except the x„- direction momentum equations (gas and 
solid phase), for which m = 2.  The quantity a is 

a = a      for gas phase equations 
(A-5) 

a = I - a   for solid phase equations 
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The vector variables used in Eq.   (A-2)  are defined as 

apU2 

ap 

ayoh 

a^Cp 

a pz 
w = 

(A-6) 

-a)Pp\ 

-a^pUp2 

-^Pp\ 

-a)Po 

where n = 1  for  i =  1  and n =  0  for  i ■  2,3. 

apUlU] 

a/jUgUj 

a/5U3Ui 

apU\ 

a^hUj 

apkU- 

= rn a/^CpUj 

a^) zUj 

"-"Vp^pi 

"-"'VP^P, 
(l-a)/,p%upi 

"-Vpups
upi 

(l-a)^ 

(A-7) 

P. = 
i 

pSn 

pSi2 

PSi3 

0 

0 

0 

0 

0 

0 

pSj, 

pSi2 

PSi3 

0 

(A-8) 

a r T, 

ar2T 

ar T. 

arq 

12 

a —Xi k 

armric 
P,l 

a F y z, 

(l-a)r v r 
nvi   p,! 

(l-a)r R,, 

{l-a)r2R 

(l-a)r R, 

12 

(A-9) 
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QT 

QT 

I I 

QT 

12 

13 

-aqj 

armriCp.j 

armriz'i 

(l-a)R|, 

{l-a)Ri2 

(l-a)Ri3 

0 
(A-10) 

Note that the velocity components (U , U2, U3) and (U -^ U  , U  ) are the 
cylindrical-polar velocity components, and  .. and R^  are the gas-phase stress 
tensor and the solid phase intergranular stress tensor, respectively, written in 
cylindrical-polar coordinates.  The molecular and turbulent stress tensors, 
Eqs. (19) and (22), may be written as 

=  2^eff D^ %eff(V-u)S    +-|(KV.U  -,,108.. 
IJ -r-etf     jj 3  /-effv '    "" "IJ   '     3   ' "B- ' ij 

and the rate of strain tensor components in cylindrical-polar coordinates are 

(A-ll) 

D,,  = 
au 
(3x, 

^22 
aug + 

dx2 r 

^33 dx- 

D|2 = ii dx,      r  ; r 
dUi 
dx 2    J 

dUs 
"13 

r _dL> 
L ax + auj 

a x^ ] 

-   _ _L r ± ^3 + augi 
D23'   2 I r   ax,      ax, J 

(A-12) 
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and 

r ax 
(rU|) + 

aug 
dx0 

+ au- 
ax- 

(A-13) 

Also, an isotropic intergranular stress tensor is assumed, 

RpSij 
(A-14) 

where the constitutive relation for R is given by Eq. (70).  Therefore, the inter- 
granular stress becomes a normal stress as is the gas pressure.  The derivatives 
required in Eqs. (A-12, A-13) must be expressed in terms of the computational 
coordinates yJ using the chain rule, Eq. (92). 

-y 
Finally, the vector S contains source terms and certain differential_^terms 

which do not conform to the basic structure of Eq. (A-2), and the vector C contains 
the additional curvature terms due to the cylindrical-polar coordinate system. 

M; 

M^ 

r 
A   + -gr*-  + a$ + ape 

a^iNjDij   -f (V-lJ); 

(Cp)pr 

Zpr 

-(l-a)^p(l + rp^)<d>' 

-M, 

-Mg 

- M3 

-r 

■l/okV-U - Pc] +S^ 

(A-15) 
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c = 

— apU2 

- — a/)U|U2 

2 I 
r   aT22 

0 

0 

0 

0 

0 

0 

0 

--f(I-a)^pUp   U 
I     ^2 
0 

0 

(A-16) 

where 

Q ! 

M = -d-a) ^ <"r>1 + Upr (A-17) 

The quantities T,   <!'>  ,  <d>  , and A are defined in Eqs. (18), (71), (79) and 
(29), respectively. 
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LIST OF SYMBOLS 

a reference speed of sound in solid phase 
P 

A transformation parameter, Eq. (103) 

A. local area of filler element i 

c specific heat at constant pressure 
P 

c specific heat at constant pressure 

C transformation parameter, Eq. (10A) 

Cy constant in turbulent viscosity relation, Eq. (A9) 
• 
d instantaneous surface regression rate 

dF average surface regression rate for erosive burning, 
Eq. (80) 

ds average steady state surface regression rate, Eq. (79) 
• i 

<d> average regression rate of so]id phase 

D transformation parameter, Eq. (106) 

D,, diameter of launching tube 

ID total deformation tensor, Eq. (20) 

D, bulk deformation tensor, Eq. (2]) 

ID. interfacial deformation tensor 
i 

e internal energy per unit mass 

E transformation parameter, Eq. (107) 

F transformation parameter, Eq. (110) 

F. resistance force opposing motion of filler element i 

Fw normal wall reaction force on filler element i, Eq. (85j 

<F> interphase drag per unit area of solid phase, Eq. (71) 

g general weighting function for phase averaging, Eqs. (1-3) 

G transformation parameter, Eq. (Ill) 

h static enthalpy 

h convective heat transfer coefficient, Eq. (77j 

h. enthalpy of igniter gas 

h total heat transfer coefficient, Eq. (39) 

H transformation parameter, Eq. (112) 

I projectile polar moment of inertia 

n identity tensor 

J Jacobian determinant of inverse coordinate transformation, 
Eq. (94) 

k turbulence kinetic energy (gas phase) 
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Ig 

k 
P 

h 
h 
Z 

LD 
M. 
1 

■+> 
M 

M 

n 

N 

Nu 
P 

P 

Pr 

Pr e* erf 

q 

qrad 

<q>i 

f 

rp 
IR 

Re 

R 

thermal conductivity of solid particles 

bulk viscosity coefficient 

erosive burning constant, Eq. (80) 

characteristic length scale for turbulent motion 
(dissipation length scale) 

dimensional reference length 

mass of filler element i, Eqs. (81-84) 

gas-solid momentum exchange, Eq. (A-17) 

rate of mass addition of igniter gas 

outward normal from the gas phase 

total number of filler elements excluding projectile 

Nusselt number for interphase heat transfer correlation 
Eq. (76) 

pressure 

Prandtl number, Pr =uc /K 
P 

effective Prandtl number for turbulent flow 

heat flux vector 

net incident radiation heat flux normal to solid 
particle surface, Eq. (37) 

interphase heat transfer relation, Eq. (78) 

radial coordinate within a spherical solid particle 

average radius of a spherical solid particle; r (x,t) 

granular stress tensor, solid phase, Eq. (23) 

Reynolds number based upon gas density particle diameter 
and relative velocity, Eq. (75) 

isotropic normal stress in the solid phase, Eq. (70) 

average surface regression rate, Eq. (33) 

universal gas constant 

position vector of solid particle, Eq. (115) 

defined by Eq. (100) 

defined by Eq. (109) 

constant in Sutherland's law, Eq. (46) 

constant in thermal conductivity relation, Eq. (48) 

production of turbulence kinetic energy due to inter- 
action between gas and solid phases, Eq. (68) 

average particle surface area 

time 

defined by Eq. (105) 
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t2 grid concentration parameter associated with sinh 
transformation 

T. mean temperature at the interface between the phases 
(film temperature) 

T phase-averaged temperature in solid particle, Eq. (30) 

T solid particle temperature 

x initial particle temperature 

T reference temperature in Sutherland's law, Eq. (^6) 

u instantaneous gas velocity 

u velocity of the interface between the phases 

u instantaneous solid phase velocity 

U Favre-averaged velocity vector 

U, velocity of igniter gas 

U jrelat_£ve velocity between gas and solid phases, 
UR = U " Un _R       p 

U, x--direction velocity component 

U. x„-direction velocity component 

U„ x--direction velocity component 

v absolute solid particle velocity vector 

V volume 

V volume occupied by gas phase gas 
V average particle volume 

W gas phase mixture molecular weight 

x,,x„,x„ cylindrical polar coordinates, (r,6,z) 

x Cartesian position vector 

y computational coordinate 

z. axial position of left-hand boundary of filler element i, 
(Fig. 1) 

z. velocity of left-hand boundary of filler element i, 
(Eqs. (86-87) 

z. acceleration of left-hand boundary of filler element i, 
Eqs. (81-83) 

Z inverse of gas phase mixture molecular weight 

a porosity 

a critical or settling porosity above which there is no 
direct contact between solid particles 

a thermal diffusivity of solid particles [u  = K /p (c ) ] 
p l p   p h pv p pJ 
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B time differencing parameter, 0.5 1(3 < 1.0 

3.E erosive burning constant in Eq. (80) 

P^ mass source due to propellant burning 

T dissipation rate of turbulence kinetic energy 

ep emissivity of solid particles 

? transformed radial coordinate within a spherical 
solid particle, Eq. (31) 

covolume factor in Noble-Abel equation of state, 
Eq. (41).   : 

n transformed normalized coordinate, Eq. (102) 

n0 value of transformed coordinate n at concentration center, 
see Eq. (102). 

A gas-solid energy exchange rate per unit volume, Eq. (29) 

0 angle of rifling in launching tube 

K gas phase thermal conductivity, Eq. (A8) 

K thermal conductivity of solid particles 

\i molecular viscosity coefficient, Eq. (46) 

Moff effective viscosity, Eq. (56) 

\ij turbulent viscosity, Eq. (49) 

Vg reference molecular viscosity at temperature Tn in 
Sutherland's law, Eq. (46) 

IT stress tensor, gas phase, Eq. (19) 
T 

IT turbulent stress tensor (Reynolds stress), Eq. (22) 

p density 

Pv^ density of the k -phase 

p" mixture density 

a Stefan-Boltzmann constant 

ai internal stress in filler element i, Eq. (86) 

o^ constant appearing in turbulence kinetic energy 
equation, Eq. (12) 

Z region of integration defined by interphase surface 
and time 

T, grid concentration parameter, Eqs. (108-113) 

Tj grid concentration parameter, Eq. (108-113) 

(J> heat feedback due to solid particle combustion, Eq. (40); 
general variable 

$ mean flow dissipation function, Eq. (28) 
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^ general property of gas or solid phase 

ty, property of the k  phase 

Superscripts 

F Favre-averaged quantity 

T Turbulent quantity 

( ) unnormalized averaged quantity, Eq. (3) 

( ) phase-averaged quantity, Eq. (3) 

( )' fluctuating component 

( ) quantity at time t 

Subscripts 

D dimensional reference quantity 

max maximum 

min minimum 

p solid phase property 

ps particle surface value 

T turbulent quantity 

w wall value 

1 associated with first coordinate direction 

2 associated with second coordinate direction 

3 associated with third coordinate direction 
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improving future reports. 
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